
ECE 604, Lecture 6

September 6, 2018

1 Introduction

In this lecture, we will cover the following topics:

• Lorentz Force Law

• Biot-Savart Law

• Ampere’s Law

• Gauss’s Law for Magnetic Field

• Magnetic Vector Potential

• Vector Poisson’s Equation

• Derivation of Biot-Savart Law from Ampere’s Law and Gauss’s Law

Additional Reading:

• Sections 2.2, 2.3, 2.4, 2.6–2.9, 2.11–2.12, Ramo et al.

Printed on September 18, 2018 at 16 : 30: W.C. Chew and D. Jiao.
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2 Lorentz Force Law

The Lorentz force law is given by

F = qE + qv×B (2.1)

The first term is electric force from Coulomb’s law while the second term is
the magnetic force also called the v×B force. The magnetic force can also be
written for an incremented current flowing in the wire of length dl, or

dF = Idl×B (2.2)

3 Biot-Savart Law

Figure 1:

Biot-Savart law states that the incremental magnetic field due to an incremental
current, as shown in Figure 1, is

dH =
Idl×R

4πR2
(3.1)
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where

R = |r− r′| (3.2)

This law was first experimentally derived. But we will give a mathematical
derivation of it later.

4 Ampere’s Law

Ampere’s law in integral form says that

˛
C

H · dl = I (4.1)

Using Stoke’s theorem, one rewrites the left-hand side of the above as

˛
C

H · dl =

¨
S

(∇×H) · dS (4.2)

But the right-hand side of the (4.1) can be written as

I =

¨
S

J · dS (4.3)

Therefore ¨
S

(∇×H) · dS =

¨
S

J · dS (4.4)

When S → 0, the above implies that

∇×H = J (4.5)
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5 Gauss’s Law—Magnetic

Gauss’s law for magnetic field says that

‹
S

B · dS = 0 (5.1)

But from Gauss’s divergence theorem,

‹
B · dS =

˚
V

∇ ·BdV (5.2)

Therefore ˚
V

∇ ·BdV = 0 (5.3)

When V → 0, we have
∇ ·B = 0

which is the partial differential equation for Gauss’ law.

6 Constitutive Relation

The constitutive relation between magnetic flux B and magnetic field H is given
as

B = µH, µ = permeability H/m (6.1)

In free space,

µ = µ0 = 4π × 10−7 H/m (6.2)

In other materials, the permeability can be written as

µ = µ0µr (6.3)

Similarly, the permittivity for electric field can be written as

ε = ε0εr (6.4)
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7 Magnetic Vector Potential A

Since from Gauss’s law

∇ ·B = 0 (7.1)

we can let

B = ∇×A (7.2)

because

∇ · ∇ ×A = 0 (7.3)

This is similar to

∇×∇Φ = 0 (7.4)

In this manner, Gauss’s law is automatically satisfied.

8 Derivation of the Vector Poisson’s Equation

From

∇×H = J (8.1)

we have

∇×
(
B

µ

)
= J (8.2)

Then using (7.2)

∇×
(

1

µ
∇×A

)
= J (8.3)

In a homogeneous medium, µ is a constant and hence

∇× (∇×A) = µA (8.4)

We use the vector identity that (see handout on Some Useful Formulas)

∇× (∇×A) = ∇(∇ ·A)− (∇ · ∇)A

= ∇(∇ ·A)−∇2A (8.5)

As a result, we arrive at

∇(∇ ·A)−∇2A = µJ (8.6)
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However, A in (7.2) is not unique because one can always define

A′ = A−∇Ψ (8.7)

Then

∇×A′ = ∇× (A−∇Ψ) = ∇×A = B (8.8)

where we have made use of that ∇ ×∇Ψ = 0. Hence, the ∇× of both A and
A′ produce the same B.

To find A properly, we have to define or set the divergence of A or provide
a gauge condition. One way is to set the divergence of A is to let

∇ ·A = 0 (8.9)

This gauge condition is also known as Coulomb’s gauge. Then

∇ ·A′ = ∇ ·A−∇2Ψ 6= ∇ ·A (8.10)

The last non-equal sign follows if ∇2Ψ 6= 0. If we stipulate that ∇·A′ = ∇·A =
0, then −∇2Ψ = 0. This does not necessary imply that Ψ = 0, but if we impose
that condition that Ψ→ 0 when r→∞, then Ψ = 0 everywhere. By so doing,
A and A′ are equal to each other, and we obtain

∇2A = −µJ (8.11)

In cartesian coordinates, the above can be viewed as three scalar Poisson’s
equations. Each of the Poisson’s equation can be solved using the Green’s
function method. Consequently, in free space

A(r) =
µ

4π

˚
V

J(r)

R
dV ′ (8.12)

where

R = |r− r′| (8.13)
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9 Derivation of Biot-Savart Law

Figure 2:

From Gauss’ law and Ampere’s law, we have derived that

A(r) =
µ

4π

˚
V

J(r)

R
dV ′ (9.1)

When the current element is small, and is carried by a wire of cross sectional
area ∆a as shown in Figure 2, we can approximate the integrand as

J(r′)dV ′ ≈ J(r′)∆V ′ = (∆a)∆l︸ ︷︷ ︸
∆V

l̂I/∆a︸ ︷︷ ︸
J(r′)

(9.2)

In the above, ∆V = (∆a)∆l and l̂I/∆a = J(r′). Here, l̂ is a unit vector pointing
in the direction of the current flow. Hence, we can let

J(r′)dV ′ ≈ I∆l (9.3)

where ∆l = ∆ll̂. Therefore, the incremental vector potential due to an incre-
mental current is

dA(r) ≈ µ

4π

(
J(r′)∆V ′

R

)
=

µ

4π

I∆l′

R
(9.4)

Since B = ∇×A, we have

dB = ∇× dA(r) ∼=
µI

4π
∇× ∆l′

R
=
−µI
4π

∆l′ ×∇ 1

R
(9.5)
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where we have made use of the fact that ∇ × af(r) = −a × ∇f(r) when a is
a constant vector (see one of the HW problems). The above can be simplified
further by making use of the fact that

∇ 1

R
= − 1

R2
R̂ (9.6)

where R̂ is a unit vector pointing in the r−r′ direction. We have also made use of
the fact that R =

√
(x− x′)2 + (y − y′)2 + (z − z′)2. Consequently, assuming

that the incremental length becomes very small, or ∆l → dl, we have, after
using (9.6) in (9.5), that

dB =
µI

4π
dl′ × 1

R2
R̂ (9.7)

=
µIdl′ × R̂

4πR2
(9.8)

Since B = µH, we have

dH =
Idl′ × R̂

4πR2
(9.9)

or

H(r) =

ˆ
I(r′)dl′ × R̂

4πR2
(9.10)

which is Biot-Savart Law
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