ECE 604, Lecture 6

September 6, 2018

1 Introduction

In this lecture, we will cover the following topics:

- Lorentz Force Law
- Biot-Savart Law
- Ampere's Law
- Gauss's Law for Magnetic Field
- Magnetic Vector Potential
- Vector Poisson's Equation
- Derivation of Biot-Savart Law from Ampere's Law and Gauss's Law Additional Reading:
- Sections 2.2, 2.3, 2.4, 2.6-2.9, 2.11-2.12, Ramo et al.

[^0]
2 Lorentz Force Law

The Lorentz force law is given by

$$
\begin{equation*}
\mathbf{F}=q \mathbf{E}+q \mathbf{v} \times \mathbf{B} \tag{2.1}
\end{equation*}
$$

The first term is electric force from Coulomb's law while the second term is the magnetic force also called the $\mathbf{v} \times \mathbf{B}$ force. The magnetic force can also be written for an incremented current flowing in the wire of length $\mathbf{d l}$, or

$$
\begin{equation*}
\mathbf{d F}=I \mathbf{d} \mathbf{l} \times \mathbf{B} \tag{2.2}
\end{equation*}
$$

3 Biot-Savart Law

Figure 1:

Biot-Savart law states that the incremental magnetic field due to an incremental current, as shown in Figure 1, is

$$
\begin{equation*}
\mathbf{d H}=\frac{I \mathrm{~d} \mathbf{l} \times \mathbf{R}}{4 \pi R^{2}} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
R=\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \tag{3.2}
\end{equation*}
$$

This law was first experimentally derived. But we will give a mathematical derivation of it later.

4 Ampere's Law

Ampere's law in integral form says that

$$
\begin{equation*}
\oint_{C} \mathbf{H} \cdot \mathbf{d l}=I \tag{4.1}
\end{equation*}
$$

Using Stoke's theorem, one rewrites the left-hand side of the above as

$$
\begin{equation*}
\oint_{C} \mathbf{H} \cdot \mathbf{d} \mathbf{l}=\iint_{S}(\nabla \times \mathbf{H}) \cdot \mathbf{d S} \tag{4.2}
\end{equation*}
$$

But the right-hand side of the (4.1) can be written as

$$
\begin{equation*}
I=\iint_{S} \mathbf{J} \cdot \mathbf{d} \mathbf{S} \tag{4.3}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\iint_{S}(\nabla \times \mathbf{H}) \cdot \mathbf{d} \mathbf{S}=\iint_{S} \mathbf{J} \cdot \mathbf{d} \mathbf{S} \tag{4.4}
\end{equation*}
$$

When $S \rightarrow 0$, the above implies that

$$
\begin{equation*}
\nabla \times \mathbf{H}=\mathbf{J} \tag{4.5}
\end{equation*}
$$

5 Gauss's Law-Magnetic

Gauss's law for magnetic field says that

$$
\begin{equation*}
\oiint_{S} \mathbf{B} \cdot \mathbf{d S}=0 \tag{5.1}
\end{equation*}
$$

But from Gauss's divergence theorem,

$$
\begin{equation*}
\oiint \mathbf{B} \cdot \mathbf{d S}=\iiint_{V} \nabla \cdot \mathbf{B} d V \tag{5.2}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\iiint_{V} \nabla \cdot \mathbf{B} d V=0 \tag{5.3}
\end{equation*}
$$

When $V \rightarrow 0$, we have

$$
\nabla \cdot \mathbf{B}=0
$$

which is the partial differential equation for Gauss' law.

6 Constitutive Relation

The constitutive relation between magnetic flux \mathbf{B} and magnetic field \mathbf{H} is given as

$$
\begin{equation*}
\mathbf{B}=\mu \mathbf{H}, \quad \mu=\text { permeability } \mathrm{H} / \mathrm{m} \tag{6.1}
\end{equation*}
$$

In free space,

$$
\begin{equation*}
\mu=\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} \tag{6.2}
\end{equation*}
$$

In other materials, the permeability can be written as

$$
\begin{equation*}
\mu=\mu_{0} \mu_{r} \tag{6.3}
\end{equation*}
$$

Similarly, the permittivity for electric field can be written as

$$
\begin{equation*}
\varepsilon=\varepsilon_{0} \varepsilon_{r} \tag{6.4}
\end{equation*}
$$

7 Magnetic Vector Potential A

Since from Gauss's law

$$
\begin{equation*}
\nabla \cdot \mathbf{B}=0 \tag{7.1}
\end{equation*}
$$

we can let

$$
\begin{equation*}
\mathbf{B}=\nabla \times \mathbf{A} \tag{7.2}
\end{equation*}
$$

because

$$
\begin{equation*}
\nabla \cdot \nabla \times \mathbf{A}=0 \tag{7.3}
\end{equation*}
$$

This is similar to

$$
\begin{equation*}
\nabla \times \nabla \Phi=0 \tag{7.4}
\end{equation*}
$$

In this manner, Gauss's law is automatically satisfied.

8 Derivation of the Vector Poisson's Equation

From

$$
\begin{equation*}
\nabla \times \mathbf{H}=\mathbf{J} \tag{8.1}
\end{equation*}
$$

we have

$$
\begin{equation*}
\nabla \times\left(\frac{\mathbf{B}}{\mu}\right)=\mathbf{J} \tag{8.2}
\end{equation*}
$$

Then using (7.2)

$$
\begin{equation*}
\nabla \times\left(\frac{1}{\mu} \nabla \times \mathbf{A}\right)=\mathbf{J} \tag{8.3}
\end{equation*}
$$

In a homogeneous medium, μ is a constant and hence

$$
\begin{equation*}
\nabla \times(\nabla \times \mathbf{A})=\mu \mathbf{A} \tag{8.4}
\end{equation*}
$$

We use the vector identity that (see handout on Some Useful Formulas)

$$
\begin{align*}
\nabla \times(\nabla \times \mathbf{A}) & =\nabla(\nabla \cdot \mathbf{A})-(\nabla \cdot \nabla) \mathbf{A} \\
& =\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A} \tag{8.5}
\end{align*}
$$

As a result, we arrive at

$$
\begin{equation*}
\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}=\mu \mathbf{J} \tag{8.6}
\end{equation*}
$$

However, \mathbf{A} in (7.2) is not unique because one can always define

$$
\begin{equation*}
\mathbf{A}^{\prime}=\mathbf{A}-\nabla \Psi \tag{8.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\nabla \times \mathbf{A}^{\prime}=\nabla \times(\mathbf{A}-\nabla \Psi)=\nabla \times \mathbf{A}=\mathbf{B} \tag{8.8}
\end{equation*}
$$

where we have made use of that $\nabla \times \nabla \Psi=0$. Hence, the $\nabla \times$ of both \mathbf{A} and \mathbf{A}^{\prime} produce the same \mathbf{B}.

To find \mathbf{A} properly, we have to define or set the divergence of \mathbf{A} or provide a gauge condition. One way is to set the divergence of \mathbf{A} is to let

$$
\begin{equation*}
\nabla \cdot \mathbf{A}=0 \tag{8.9}
\end{equation*}
$$

This gauge condition is also known as Coulomb's gauge. Then

$$
\begin{equation*}
\nabla \cdot \mathbf{A}^{\prime}=\nabla \cdot \mathbf{A}-\nabla^{2} \Psi \neq \nabla \cdot \mathbf{A} \tag{8.10}
\end{equation*}
$$

The last non-equal sign follows if $\nabla^{2} \Psi \neq 0$. If we stipulate that $\nabla \cdot \mathbf{A}^{\prime}=\nabla \cdot \mathbf{A}=$ 0 , then $-\nabla^{2} \Psi=0$. This does not necessary imply that $\Psi=0$, but if we impose that condition that $\Psi \rightarrow 0$ when $\mathbf{r} \rightarrow \infty$, then $\Psi=0$ everywhere. By so doing, \mathbf{A} and \mathbf{A}^{\prime} are equal to each other, and we obtain

$$
\begin{equation*}
\nabla^{2} \mathbf{A}=-\mu \mathbf{J} \tag{8.11}
\end{equation*}
$$

In cartesian coordinates, the above can be viewed as three scalar Poisson's equations. Each of the Poisson's equation can be solved using the Green's function method. Consequently, in free space

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu}{4 \pi} \iiint \int_{V} \frac{\mathbf{J}(\mathbf{r})}{R} d V^{\prime} \tag{8.12}
\end{equation*}
$$

where

$$
\begin{equation*}
R=\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \tag{8.13}
\end{equation*}
$$

9 Derivation of Biot-Savart Law

Figure 2:
From Gauss' law and Ampere's law, we have derived that

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu}{4 \pi} \iiint_{V} \frac{\mathbf{J}(\mathbf{r})}{R} d V^{\prime} \tag{9.1}
\end{equation*}
$$

When the current element is small, and is carried by a wire of cross sectional area Δa as shown in Figure 2, we can approximate the integrand as

$$
\begin{equation*}
\mathbf{J}\left(\mathbf{r}^{\prime}\right) d V^{\prime} \approx \mathbf{J}\left(\mathbf{r}^{\prime}\right) \Delta V^{\prime}=\underbrace{(\Delta a) \Delta l}_{\Delta V} \underbrace{\hat{l} I / \Delta a}_{\mathbf{J}\left(\mathbf{r}^{\prime}\right)} \tag{9.2}
\end{equation*}
$$

In the above, $\Delta V=(\Delta a) \Delta l$ and $\hat{l} I / \Delta a=\mathbf{J}\left(\mathbf{r}^{\prime}\right)$. Here, \hat{l} is a unit vector pointing in the direction of the current flow. Hence, we can let

$$
\begin{equation*}
\mathbf{J}\left(\mathbf{r}^{\prime}\right) d V^{\prime} \approx I \Delta \mathbf{l} \tag{9.3}
\end{equation*}
$$

where $\Delta \mathrm{l}=\Delta l \hat{l}$. Therefore, the incremental vector potential due to an incremental current is

$$
\begin{equation*}
\mathbf{d} \mathbf{A}(\mathbf{r}) \approx \frac{\mu}{4 \pi}\left(\frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right) \Delta V^{\prime}}{R}\right)=\frac{\mu}{4 \pi} \frac{I \Delta \mathbf{l}^{\prime}}{R} \tag{9.4}
\end{equation*}
$$

Since $\mathbf{B}=\nabla \times \mathbf{A}$, we have

$$
\begin{equation*}
\mathrm{dB}=\nabla \times \mathbf{d A}(\mathbf{r}) \cong \frac{\mu I}{4 \pi} \nabla \times \frac{\Delta \mathrm{l}^{\prime}}{R}=\frac{-\mu I}{4 \pi} \Delta \mathbf{l}^{\prime} \times \nabla \frac{1}{R} \tag{9.5}
\end{equation*}
$$

where we have made use of the fact that $\nabla \times \mathbf{a} f(\mathbf{r})=-\mathbf{a} \times \nabla f(\mathbf{r})$ when \mathbf{a} is a constant vector (see one of the HW problems). The above can be simplified further by making use of the fact that

$$
\begin{equation*}
\nabla \frac{1}{R}=-\frac{1}{R^{2}} \hat{R} \tag{9.6}
\end{equation*}
$$

where \hat{R} is a unit vector pointing in the $\mathbf{r}-\mathbf{r}^{\prime}$ direction. We have also made use of the fact that $R=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}$. Consequently, assuming that the incremental length becomes very small, or $\Delta \mathbf{l} \rightarrow \mathbf{d l}$, we have, after using (9.6) in (9.5), that

$$
\begin{array}{r}
\mathbf{d B}=\frac{\mu I}{4 \pi} \mathbf{d l}^{\prime} \times \frac{1}{R^{2}} \hat{R} \\
=\frac{\mu I \mathbf{d l}^{\prime} \times \hat{R}}{4 \pi R^{2}} \tag{9.8}
\end{array}
$$

Since $\mathbf{B}=\mu \mathbf{H}$, we have

$$
\begin{equation*}
\mathrm{dH}=\frac{I \mathbf{d l}^{\prime} \times \hat{R}}{4 \pi R^{2}} \tag{9.9}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{H}(\mathbf{r})=\int \frac{I\left(\mathbf{r}^{\prime}\right) \mathbf{d l}^{\prime} \times \hat{R}}{4 \pi R^{2}} \tag{9.10}
\end{equation*}
$$

which is Biot-Savart Law

[^0]: Printed on September 18, 2018 at 16:30: W.C. Chew and D. Jiao.

